Seite 1 von 1

3D Drucker Filamentkasseten Reset

Verfasst: Mi 1. Aug 2018, 23:42
von Hannes
Alle die einen 3D Drucker von XYZ Printing haben und nicht länger immer die teuren Original Filament-Kassetten kaufen wollen, kann ich hier eine Lösung anbieten.

Grundsätzlich kann die Filament-Kassette geöffnet werden und somit mit einem günstigeren ABS Filament neu gewickelt werden. Der 3D Drucker sagt aber immer noch, dass das Filament verbraucht ist und nicht gedruckt werden kann. Dazu gibt es einen "XYZ-Filament-Reseter".

Die Filament-Kassetten haben an der Unterseite einen kleinen EEPROM Chip verbaut, der diese Informationen an den Drucker übergibt. Dieser Chip weißt drei Pins auf. (GND, DAT, VCC). Mit einem Arduino Uno und dem angefügten Code kann man den Chip Rücksetzen, sodass er dem Drucker wieder die volle Kassette sagt. Welche Länge aufgewickelt worden ist, kann im Code beliebig abgeändert werden. So kann man sich die XYZ-Filament-Kassetten selbst wickeln und softwareseitig rücksetzen, sodass der Drucker diese auch freigibt und für den Druck verwendet.

Mit dieser Methode wäre es ebenso möglich, auch ein anderes Filament wie PLA zu verwenden, da in diesem Code auch die Heizbetttemperatur und die Extrudertemperatur verändert werden kann.

Bei Interesse oder Fragen einfach melden.

Beschreibung, Software und vermutlich Urheberrecht liegt bei: https://www.voltivo.com/da-vinci-1-0-fi ... n-arduino/

Code: Alles auswählen

/*

Da Vinci EEPROM update Copyright (C) 2014 by Oliver Fueckert <oliver@voltivo.com>
Increment Serial code - contributed by Matt
UNI/O Library Copyright (C) 2011 by Stephen Early <steve@greenend.org.uk>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.  */

#ifndef _NANODEUNIO_LIB_H
#define _NANODEUNIO_LIB_H

#if ARDUINO >= 100
  #include <Arduino.h> // Arduino 1.0
#else
  #include <WProgram.h> // Arduino 0022
#endif

#define NANODE_MAC_DEVICE 0xa0
#define NANODE_MAC_ADDRESS 0xfa

#define CODE 0x00 //1 Byte
#define MATERIAL 0x01 //1 Byte
#define COLOR 0x02  //2 Bytes
#define DATE 0x05	//4 Bytes
#define TOTALLEN 0x08 //4 Bytes
#define NEWLEN 0x0C //4 Bytes
#define HEADTEMP 0x10	//2 Bytes
#define BEDTEMP 0x12	//2Bytes
#define MLOC 0x14	//2 Bytes
#define DLOC 0x16	//2 Bytes
#define SN 0x18		//12 Bytes
#define CRC 0x24	//2 Bytes
#define LEN2 0x34	//4 Bytes

void IncrementSerial(unsigned char * cArray, long lAddress, long lSize)
{
	unsigned char szTempBuffer[20] = {0};
	memcpy(szTempBuffer,&cArray[lAddress],lSize);
	long lSerial = atol((char *)szTempBuffer);
	lSerial++;
	sprintf((char *)szTempBuffer,"%04d",lSerial);
	memcpy(&cArray[lAddress],szTempBuffer,lSize);
}

class NanodeUNIO {
 private:
  byte addr;
 public:
  NanodeUNIO(byte address);

  boolean read(byte *buffer,word address,word length);
  boolean start_write(const byte *buffer,word address,word length);
  boolean enable_write(void);
  boolean disable_write(void);
  boolean read_status(byte *status);
  boolean write_status(byte status);
  boolean await_write_complete(void);
  boolean simple_write(const byte *buffer,word address,word length);
};

#endif /* _NANODEUNIO_LIB_H */

#define UNIO_STARTHEADER 0x55
#define UNIO_READ        0x03
#define UNIO_CRRD        0x06
#define UNIO_WRITE       0x6c
#define UNIO_WREN        0x96
#define UNIO_WRDI        0x91
#define UNIO_RDSR        0x05
#define UNIO_WRSR        0x6e
#define UNIO_ERAL        0x6d
#define UNIO_SETAL       0x67

#define UNIO_TSTBY 600
#define UNIO_TSS    10
#define UNIO_THDR    5
#define UNIO_QUARTER_BIT 10
#define UNIO_FUDGE_FACTOR 5
#define UNIO_OUTPUT() do { DDRD |= 0x80; } while (0)
#define UNIO_INPUT() do { DDRD &= 0x7f; } while (0)

static void set_bus(boolean state) {
  PORTD=(PORTD&0x7f)|(!!state)<<7;
}

static boolean read_bus(void) {
  return !!(PIND&0x80);
}
static void unio_inter_command_gap(void) {
  set_bus(1);
  delayMicroseconds(UNIO_TSS+UNIO_FUDGE_FACTOR);
}

static void unio_standby_pulse(void) {
  set_bus(0);
  UNIO_OUTPUT();
  delayMicroseconds(UNIO_TSS+UNIO_FUDGE_FACTOR);
  set_bus(1);
  delayMicroseconds(UNIO_TSTBY+UNIO_FUDGE_FACTOR);
}

static volatile boolean rwbit(boolean w) {
  boolean a,b;
  set_bus(!w);
  delayMicroseconds(UNIO_QUARTER_BIT);
  a=read_bus();
  delayMicroseconds(UNIO_QUARTER_BIT);
  set_bus(w);
  delayMicroseconds(UNIO_QUARTER_BIT);
  b=read_bus();
  delayMicroseconds(UNIO_QUARTER_BIT);
  return b&&!a;
}

static boolean read_bit(void) {
  boolean b;
  UNIO_INPUT();
  b=rwbit(1);
  UNIO_OUTPUT();
  return b;
}

static boolean send_byte(byte b, boolean mak) {
  for (int i=0; i<8; i++) {
    rwbit(b&0x80);
    b<<=1;
  }
  rwbit(mak);
  return read_bit();
}

static boolean read_byte(byte *b, boolean mak) {
  byte data=0;
  UNIO_INPUT();
  for (int i=0; i<8; i++) {
    data = (data << 1) | rwbit(1);
  }
  UNIO_OUTPUT();
  *b=data;
  rwbit(mak);
  return read_bit();
}

static boolean unio_send(const byte *data,word length,boolean end) {
  for (word i=0; i<length; i++) {
    if (!send_byte(data[i],!(((i+1)==length) && end))) return false;
  }
  return true;
}

static boolean unio_read(byte *data,word length)  {
  for (word i=0; i<length; i++) {
    if (!read_byte(data+i,!((i+1)==length))) return false;
  }
  return true;
}

static void unio_start_header(void) {
  set_bus(0);
  delayMicroseconds(UNIO_THDR+UNIO_FUDGE_FACTOR);
  send_byte(UNIO_STARTHEADER,true);
}

NanodeUNIO::NanodeUNIO(byte address) {
  addr=address;
}

#define fail() do { sei(); return false; } while (0)

boolean NanodeUNIO::read(byte *buffer,word address,word length) {
  byte cmd[4];
  cmd[0]=addr;
  cmd[1]=UNIO_READ;
  cmd[2]=(byte)(address>>8);
  cmd[3]=(byte)(address&0xff);
  unio_standby_pulse();
  cli();
  unio_start_header();
  if (!unio_send(cmd,4,false)) fail();
  if (!unio_read(buffer,length)) fail();
  sei();
  return true;
}

boolean NanodeUNIO::start_write(const byte *buffer,word address,word length) {
  byte cmd[4];
  if (((address&0x0f)+length)>16) return false; // would cross page boundary
  cmd[0]=addr;
  cmd[1]=UNIO_WRITE;
  cmd[2]=(byte)(address>>8);
  cmd[3]=(byte)(address&0xff);
  unio_standby_pulse();
  cli();
  unio_start_header();
  if (!unio_send(cmd,4,false)) fail();
  if (!unio_send(buffer,length,true)) fail();
  sei();
  return true;
}

boolean NanodeUNIO::enable_write(void) {
  byte cmd[2];
  cmd[0]=addr;
  cmd[1]=UNIO_WREN;
  unio_standby_pulse();
  cli();
  unio_start_header();
  if (!unio_send(cmd,2,true)) fail();
  sei();
  return true;
}

boolean NanodeUNIO::disable_write(void) {
  byte cmd[2];
  cmd[0]=addr;
  cmd[1]=UNIO_WRDI;
  unio_standby_pulse();
  cli();
  unio_start_header();
  if (!unio_send(cmd,2,true)) fail();
  sei();
  return true;
}

boolean NanodeUNIO::read_status(byte *status) {
  byte cmd[2];
  cmd[0]=addr;
  cmd[1]=UNIO_RDSR;
  unio_standby_pulse();
  cli();
  unio_start_header();
  if (!unio_send(cmd,2,false)) fail();
  if (!unio_read(status,1)) fail();
  sei();
  return true;
}

boolean NanodeUNIO::write_status(byte status) {
  byte cmd[3];
  cmd[0]=addr;
  cmd[1]=UNIO_WRSR;
  cmd[2]=status;
  unio_standby_pulse();
  cli();
  unio_start_header();
  if (!unio_send(cmd,3,true)) fail();
  sei();
  return true;
}

boolean NanodeUNIO::await_write_complete(void) {
  byte cmd[2];
  byte status;
  cmd[0]=addr;
  cmd[1]=UNIO_RDSR;
  unio_standby_pulse();
  do {
    unio_inter_command_gap();
    cli();
    unio_start_header();
    if (!unio_send(cmd,2,false)) fail();
    if (!unio_read(&status,1)) fail();
    sei();
  } while (status&0x01);
  return true;
}

boolean NanodeUNIO::simple_write(const byte *buffer,word address,word length) {
  word wlen;
  while (length>0) {
    wlen=length;
    if (((address&0x0f)+wlen)>16) {
      wlen=16-(address&0x0f);
    }
    if (!enable_write()) return false;
    if (!start_write(buffer,address,wlen)) return false;
    if (!await_write_complete()) return false;
    buffer+=wlen;
    address+=wlen;
    length-=wlen;
  }
  return true;
}

static void status(boolean r)
{
  if (r) Serial.println("(success)");
  else Serial.println("(failure)");
}

static void dump_eeprom(word address,word length)
{
  byte buf[128];
  char lbuf[80];
  char *x;
  int i,j;

  NanodeUNIO unio(NANODE_MAC_DEVICE);
  
  memset(buf,0,128);
  status(unio.read(buf,address,length));
  
  for (i=0; i<128; i+=16) {
    x=lbuf;
    sprintf(x,"%02X: ",i);
    x+=4;
    for (j=0; j<16; j++) {
      sprintf(x,"%02X",buf[i+j]);
      x+=2;
    }
    *x=32;
    x+=1;
    for (j=0; j<16; j++) {
      if (buf[i+j]>=32 && buf[i+j]<127) *x=buf[i+j];
      else *x=46;
      x++;
    }
    *x=0;
    Serial.println(lbuf);
  }
}

int led = 13;

/*
These are the values to be written to the EEPROM
Make sure only one is uncommented.
By default its set for the starter ABS cartdridge with 120m of filament 

Verified with firmware 1.1.I
*/

// Value to write to the EEPROM for remaining filament lenght
// Default Starter Cartdridge is 120m
//char x[] = {0xc0,0xd4,0x01,0x00}; //120m
char x[] = {0x80,0xa9,0x03,0x00}; //240m
//char x[] = {0x80,0x1a,0x06,0x00}; //400m

// extruder temp, default is 210 C for ABS
char et[] = {0xd2,0x00}; // 210 C 
//char et[] = {0xe6,0x00}; // 230 C
//char et[] = {0xf5,0x00}; // 245 C
//char et[] = {0xfa,0x00}; // 250 C

// bed temp 90 degrees, default ABS
char bt[] = {0x5a,0x00};

byte sr;
NanodeUNIO unio(NANODE_MAC_DEVICE);
  
void setup() {
  pinMode(13, OUTPUT);
  Serial.begin(115200);
}

void loop() {
  
  do {
    digitalWrite(led, LOW); 
    Serial.println("Testing connection to Da Vinci EEPROM CHIP\n");    
    delay(100);
    digitalWrite(led, HIGH);
  } while(!unio.read_status(&sr));
  
  Serial.println("Da Vinci EEPROM found...");
  Serial.println("Reading the Davinci EEPROM Contents...");
  dump_eeprom(0,128);
  //dump_eeprom(116,4);
	
  //Read the serial number - added by Matt
  byte buf[20];
  memset(buf,0,20);
  status(unio.read(buf,SN,12));
  //Increment the serial number
  IncrementSerial(&buf[0], 0, 12);	
 
  Serial.println("Updating EEPROM...");
  status(unio.simple_write((const byte *)x,TOTALLEN,4));
  status(unio.simple_write((const byte *)x,NEWLEN,4));
  status(unio.simple_write((const byte *)et,HEADTEMP,2)); // extruder temp
  status(unio.simple_write((const byte *)bt,BEDTEMP,2)); // bed temp
  //Write the serial number
  status(unio.simple_write((const byte *)buf,SN,12)); //Serial Number
  status(unio.simple_write((const byte *)x,LEN2,4));
  // same block from offset 0 is offset 64 bytes
  status(unio.simple_write((const byte *)x,64 + TOTALLEN,4));
  status(unio.simple_write((const byte *)x,64 + NEWLEN,4));
  status(unio.simple_write((const byte *)et,64 + HEADTEMP,2)); // extruder temp
  status(unio.simple_write((const byte *)bt,64 + BEDTEMP,2)); // bed temp
   //Write the serial number
  status(unio.simple_write((const byte *)buf,64 + SN,12)); //Serial Number
  status(unio.simple_write((const byte *)x,64 + LEN2,4));

  Serial.println("Dumping Content after modification...");
  dump_eeprom(0,128);
 
  digitalWrite(led, HIGH);   // turn the LED on
  delay(10000);               // wait for two seconds 
}
Bild von einer Vorrichtung, die man einfach auf den Chip der Filament-Kassette halten kann.

20180801_233906.jpg
20180801_233855.jpg
20180801_233848.jpg